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On the maximum thrust of a yacht by sailing close to wind 
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S U M M A R Y  

The maximum thrust produced by the combined action of sails and keel is considered. The theory is linearized 
and holds for sailing close to wind. A numerical example is given. 

1. Introduction 

In a former paper [1], the problem has been considered of the maximum thrust pro- 
duction of sails, while sailing close to the wind. By this is meant that the angle between the 
ship's course and the negative direction of the velocity of the prevailing wind is small of 
O(e) (e is a small parameter). This implies that also the direction of the thrust makes an 
angle of O(e) with the negative wind direction. Under these circumstances we are able to 
optimize the thrust in a linearized theory because then the thrust and the induced re- 
sistance are of the same order of magnitude. 

The keel of a sailing yacht is needed to neutralize, in combination with the hull, the 
sideforce and heeling moment produced by the sails. In general this is done by using the 
keel as a rigid lifting surface with a weight connected to it. However, we can also look at 
the keel as a lifting surface, which can be given an optimum shape in order to minimize its 
induced resistance, and thus optimize its action. Here we will consider the combined th- 
rust production of sails and keel optimized in this way. It will be clear that then there is no 
fundamental difference between the keel and the sails, as far as the thrust production is 
conce rned .  

The essential condition for sailing is the existence of a difference in the velocities of air 
and water. In order that sails and keel can both be treated by a theory for "sailing close to 
wind", it is necessary that the angle between the velocities of air and water with respect to 
the yacht is small of O(e). To simplify the problem, we consider the keel and the sub- 
merged part of the hull as one lifting surface. In a linearized optimization theory, which 
will be used here, we may, without restricting generality, represent lifting surfaces by lifting 
lines. We stress that this theory is also valid for sails and keels of small aspect ratio; they 
only have to be lightly loaded, because then we may linearize. 

The lifting line, representing the keel, will end at the boundary between air and water. 
In [1] it has been shown, that in the situation considered here we may represent the sails 
by o n e  lifting line; this line will end at some distance from the water surface in order to 
simulate the gap between boom and hull. (Rather than simulating the gap between boom 
and hull, we have to simulate the one between foresail and deck, for, when both sails are 
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represented by one lifting line, this is the smallest gap.) Thus the yacht is, as far as its 
thrust production is concerned, considered as two coupled lifting lines, one of which pro- 
trudes in the air, the other one in the water. The induced resistance is, by its very nature, 
taken into account in this theory, while determining the optimum circulation of the lifting 
lines. 

In the state of uniform motion, the driving force acting on the yacht, and produced by 
sails and keel, is neutralized by the form drag, friction drag and wavemaking resistance, 
which together will be called the total resistance of the yacht. In this paper we will not try 
to find this uniform motion state, but only determine the maximum thrust under certain 
given circumstances. This means that we do not calculate the (maximum) speed of the 
yacht, so in the computations a reasonable choice has to be made for its magnitude. 

Important data in this problem are the velocities of air and water with respect to the 
yacht, the span of sails and keel, the width of the gap between sails and deck, and the 
stability curve of the yacht. For some values of these parameters, we will determine the 
maximum thrust and the corresponding circulations of sails and keel. 

It will turn out that in general the optimum circulation distributions, even in the up- 
right position of the yacht, are not elliptical, as is sometimes believed. First this is a 
consequence of the reflecting property of the water surface. The second reason is that there 
are constraints on the actions of sails and keel, because their sideforces have to be equal 
and opposite, while their moments have to be balanced by the righting moment of the 
yacht. 

Other authors (e.g. Tanner [2], Milgram [3], [4]) have already used the idea of replac- 
ing sails by lifting lines. Tanner used the lifting line representation to calculate the distri- 
bution of the loading, downwash velocity and induced drag of a "Finn" dinghy sail when 
sailing upright. Milgram used lifting line theory to minimize the induced resistance of sails. 
He observed that the effect of heeling on sail aerodynamics is negligible, as long as the 
heeling angle does not become too large. This was confirmed by the calculations in [1]. 
Milgram reduced the heeling moment, created by the sails, by an appropriate choice of the 
coefficients in the Fourier expansion of the circulation distribution ([4], Section 2). The 
idea of reducing the heeling moment and even the sideforce has been further worked out 
in [1]. There a consistent linearized optimization theory has been given, when constraints 
are imposed on the sideforce and heeling moment. 

Curry already suggested ([5], p. 133) to use cambered centreboards in order to improve 
the dynamic action of the underwater ship. In an attractive introduction to the dynamics 
of sailing, Kay [-6] explains that there is no essential difference between the underwater- 
and above-water-part of a sailing yacht when only the thrust production is considered. 

The aim of this paper is to combine the mentioned ideas in a linearized optimization 
theory for both sails and keel in their indissoluble reciprocal relation. 

2. Formulation of the problem 

Consider a right-handed Cartesian coordinate system (X YZ) which is fixed to the yacht. 
The region Z > 0 is filled with air, the region Z < 0 with water. 

In the YZ-plane we assume a line p which makes an angle ~ (the heeling angle) with the 
Z-axis. Along this line we have in the halfspace Z > 0 a parameter s > 0, which denotes 
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Figure 2.1. The lifting lines and the incoming flow. 
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the distance of a point of p to the origin, and in the halfspace Z < 0 an analogous para- 
meter tr > 0. 

The lifting line representing the sails is lying along p from s = a to s = b, the line 
representing the keel extends from the origin to o- = c. The circulations/~(s) a n d / ~ ( a )  of 
the lifting lines are taken positive if they are connected with a right-handed screw in the 
direction of increasing s or increasing a respectively. Here we introduced the convention 
that quantities belonging to the air are given a superscript "a", those belonging to the 
water a superscript "(~". 

The water has a uniform velocity of magnitude V, and is directed along the positive X- 
axis. The wind has a uniform velocity of magnitude U, and makes an angle e~ with the X- 
axis. Here e is a small parameter, with respect to which the theory is linearized, while 
c~ is O(e~ 

The thrust T is the component of the total force acting on the system of lifting lines, 
which is directed along some prescribed line parallel to the (XY)-plane, making an angle 
ect~ (~j of O(e~ with the X-axis. It will be taken positive if Tis directed into the halfspace 
X < 0. The sideforce F S is the component of the total force perpendicular to T and parallel 
to the (XY)-plane, its positive direction being the positive direction of T, rotated clockwise 
(anticlockwise) over �89 radians for the sails (keel). The heeling moment M h is the moment 
exerted around the working line of T, positive if it is connected as a right-handed screw 
with the positive direction of T. 

Now, if we have chosen the velocities U and V, and an angle e~ between them, we do 
not yet know the exact direction of the total resistance R (we only know that it makes an 
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angle of O(e) with the positive X-axis), and therefore we can not prescribe the direction 
(eal) in which we want to maximize the thrust. However, this difficulty can be overcome 
by the following reasoning. The thrust T is O(e2), and it is neutralized by the total re- 
sistance which, therefore, is of the same order of magnitude. So if R and T are not exactly 
working in opposite direction, but are making an angle rc - O(e), their resultant force is 
O(e3), an order of magnitude which is not taken into account in our linearized theory. 
This makes it reasonable to formulate our problem as follows: 

Find the direction, which makes an angle eel with the negative X-axis, together with 
the heeling angle/~, for which the thrust assumes its maximum value, while the fol- 
lowing conditions are satisfied: 
(a) up to and including O(e) there should be no resultant sideforce, 
(b) if the yacht has a righting moment, depending on the angle of heel fl, of strength 

m*(~), the heeling moment, exerted by sails and keel, should be in equilibrium 
with this righting moment. 

In the following we will see that the thrust is up to and including quantities of O(e 2) 
independent of the direction in which it is demanded, as long as this direction makes an 
angle of O(e) with the X-axis. This is a consequence of the sideforces of sails and keel 
being equal and opposite. Hence in the above formulation the direction of the thrust can 
be chosen to be the negative X-direction. 

We remark here that we have tacitly assumed that the yacht has enough longitudinal 
stability to neutralize the moment around an axis, normal to the thrust, exerted by driving 
forces of sails and keel, and which is O(e2). 

In this paper we will assume the water to have zero velocity in a coordinate system, which 
is at rest with respect to a fixed point on the shore (it is not "streaming"). This is no real 
restriction. The wind with respect to this coordinate system will be called the true wind U. 
The angle between the ship's course and the direction of 0 is called the true angle of 
incidence 4. In Fig. 2.2, the relation between U, U (which we call the relative windspeed), 

and ~ (the relative angle of incidence) is shown. 

Figure 2.2. Relation between true and relative windspeed and angle of incidence. 

From this figure we see that the relative angle of incidence is, in the case of sailing close to 
wind, always smaller than the true one, whereas the relative windspeed is always greater 
than the true one. 
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3. The optimization problem 

We recapitulate some of the notations and results of [-1], and will adapt these to the 
problem under consideration. A modification of the formulae of [1] will be necessary, 
because there it is not possible to determine the minimum induced resistance of a lifting 
line, when the sideforce is prescribed in the direction normal to the incoming flow (in fact 
this means that we prescribe the total aerodynamic force acting on the lifting line). Such a 
result will be needed here, so we shortly treat this optimization problem for the sails; the 
keel can be treated completely analogously. In this section we neglect the superscript "a". 

In a right-handed Cartesian coordinate system X YZ, with respect to which the fluid is 
at rest, a lifting line moves with constant speed U in the negative X-direction. The shed 
free vorticity lies on a strip H, parallel to the X-axis, which makes an angle fl with the 
Z-axis. 

Z 

13,______ 

~ 7  . . . . .  

(I..E ~ 

u 

/ /  

~ -b 

Figure 3.1. The lifting line and the strips H and H'. 

H _ _  

"x 

At the water surface, supposed to be at the plane Z -- 0, the boundary condition to be 
satisfied is that the normal velocity vanishes. In order to simulate this, the strip H is 
reflected in the plane Z = 0, its image being called H'. At the plane through H, which 
contains the X-axis, we have a parameter s which denotes the distance of a point of this 
plane to the X-axis. At the plane through H'  the corresponding parameter has negative 
values. H extends from s = a to s = b, so H '  extends from s = - a to s = - b (Figure 3.1). 

The circulation F(s) of the lifting lines is taken positive if it is connected with a right- 
handed screw in positive s-direction, the free vorticity 7(s) is positive if it is connected with 
a right-handed screw in the positive X-direction. Because of the symmetry we have 
F(s) = F ( - s ) ,  7(s)= - 7 ( - s ) .  By virtue of Kelvin's law the total circulation of H, and 
hence of H', is zero. 

The sideforce F~, positive in positive Y-direction, and the heeling moment Mh, positive 
in negative X-direction, are prescribed: 

F~ = eFt, Mh = emh, (3.1) 

where P~ and )~t h are O(e~ 
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Now, if the lifting line moves throught the fluid, a certain amount of work has to be 
performed per unit of time in order to overcome the induced resistance. We may also say 
that this work is used to build up the free vortex sheet, for no energy is radiated to infinity 
because of the incompressibility of the fluid. This vortex sheet adds per unit of time an 
amount of kinetic energy to the fluid equal to the performed amount  of work. Posed in 
this way, we see that minimizing the induced resistance is the same as minimizing the 
kinetic energy put into the fluid per unit of time. 

In the Trefftz region (far behind the lifting line), where the influence of the lifting line 
has disappeared, t he  fluid flow is two-dimensional and can be described by a potential 
function ~0(y, z). Here the amount of kinetic energy per unit of length is 

aO ~ 9  2 

where p is the density of the medium. 
The constraints on the sideforce and the heeling moment can be written as 

f KI(0)  - + p U c o s  fl [0(s)]_; ds = -2e/7~, (3.3) 
b 

K2( fp  ) ~ + p U  Isl[e(s)]+ ds = --2gJ~lh,  (3 .4)  
b 

where [(0(s)] 7 is the jump of ~0 over the strip H or H'  and [~0(s)] 7 - 0 for - a < s < a. 
We introduce the Lagrange multipliers 2 a and 221-1 cos fl, where l = b - a; then we 

have to minimize the functional 

G({o) = E(~o) + 21Ka({o) + 221 -~ cos flK2({o ). (3.5) 

If {o is the optimum potential function, the first variation G in {o has to vanish: 

o = dG = - p  ~nn - Ucos f l  21+)~2 [6(o(s)]+ ds, (3.6) 
b 

where a/On means differentiation in the direction of the normal to H or H', which has been 

indicated in Fig. 3.1. 
In [-1] it has been shown that from (3.6) follows: 

• ( P - U c ~  2 1 ~ ? n  q - & - ~ ) '  s ~ ( - b , - a )  w ( a , b ) .  (3.7) 

A more general optimization theory is given in [73, of which this result is a special case. 
We now introduce the functions ~u~ and ~u z, which satisfy 

Oq/1 _ 1, - I s ] ,  s~ - - 1 ,  - w + 1  
& & T T '  T ' 

Agq = 0, ~u i ~ 0 for y2 nt_ Z2 __. 0{3. 

(3.8) 
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Then, by (3.7), we can write ~0 as 

~0 = U l  cos fl(21~//1 --~/~l[ff2). (3.9) 

The induced normal velocity w,(s) at the lifting line is half the induced normal velocity 
at the corresponding point of the strip in the Trefftz plane, so 

w"(s ) -  2 ~n - � 8 9  2 1 + ; t  2 , s e ( - b , - a )  w (a ,b ) .  (3.10) 

The induced resistance R~, positive in negative X-direction, becomes 

f: Ri = + p  w,(s)[~o(s)3+ ds 

t 
l +all 

= +�89 z cos 2 fl (21 + )@s[){2~[~u~(s)]+ + ),2[~Uz(S)]+} ds. (3.11) 
Jail 

If we introduce the notation 

f 
l +a/l 

Ijk = [~u~(s)] ~_ s k ds, j = 1, 2, k = O, 1, 
,dalZ 

(3.12) 

then R i can be written as 

Ri = s p u l  _,,2,2t cos 2 fl{)fllao + 2122(120 -}- 112) + 22121}  �9 

In order to obtain simple formulae, we write the prescribed/~ and Mh as 

f f  s = - - P I P  U212 COSZ flllo, 2QI h = - / J 2 P U e l  3 cos fli11, 

(3.13) 

(3.14) 

by which the factors Pl and I/2 are defined, and can be computed, 
By (3.3) and (3.4) 21 and 22 can be expressed in/~1 and #2, and hence are known. Then 

the induced resistance R i becomes 

Ri = _�89 D -  1 e 2 2 cos fl{/11I~o121 - l q l z f l l O l l l ( l a l  +12o ) 2 2 + # f l l o l la } ,  (3.15) 

where D = 11112o - 110121. The corresponding spanwise circulation distribution F(s) is 

r(s) = [ ~ ( s ) ] ;  

= UID -1  cos f l{ ( l_t2I l l I :o  - r  + + I~oI~1(r 1 - /Zz)[~Uz(S)]  +}. (3.16) 

Now we can easily determine the maximum thrust, under the mentioned constraints, in 
a direction which makes an angle ~cq (cq of O(e~ with the X-axis, of a lifting line moving 
along H. We saw that the circulation F(s) in (3.16) leaves behind minimum kinetic energy, 
so this is the circulation we need. The force component in the desired direction is simply 
the projection of the sideforce F s in (3.14) and the induced resistance R i in (3.15) on this 
direction: 
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T = R i "t- cxlF s 

- 2 2 
_= le2pU212  D 1 c o s  2f l{#1110121 _ # 1 # 2 1 1 0 i i 1 ( i l l  + I20)  

2 2 2#aetDito}" + # 2 I l o l l l  + (3.17) 

With respect to the keel one remark has to be made. Because the line representing the 
keel ends at the water surface, Kelvin's law does not apply to the strips H and H'  
separately. Of course Kelvin's law is satisfied for H and H'  together, because of ;~(s) = 
= - ~ ( - s ) .  

4. The two coupled lifting lines 

We defined the still unknown direction in which the thrust T has to be optimized to make 
an angle ec~ 1 (c~ 1 of O(e~ with V. Then the angle between Tand U is (c~ - ctl )e. 

From (3.17) we now get the maximum thrust, delivered by the sails and tbe keel: 

T = - � 8 9  - a)2 2 a 2 . . . . .  ~- {,ul(Iao ) 121 - # t # z l x o l l l ( I t l  + 120) 
L -  

p ~ V 2 c  2 
2 a a )2 (0~ -- O~l)2Dalalo} 4- D~ o { v l ( I l o  ) 121 + #2Iao(Ill + #1 _ _  2 ~ 2 w 

. . . .  2o, ,o 2 2D~Oi],0}]. - V lVzI~ol l l ( I la  + 1 2 o ) + V 2 I l o ( I l l )  + vl~ 1 (4.1) 

Here v t and v 2 play the same role for the keel, as /q  and #2 do for the sails, see (3.14). 
The equilibrium conditions for the sideforces and moments yield the following equa- 

tions: 

#1paU2(b 2 a - a )  I~0 o~ 2 2 a~ - - v l p  V c 1 1 0 = 0 ,  

pePaU2(b - a) 3 cos flI"11 + Vzp~176 3 c o s  f l I~t  + p~ = O, 

(4.2) 

(4.3) 

Y 

A Rai r R 

X 

Figure 4.1. The directions of Tand R. 
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where the additional righting moment m*(fl) of the yacht has been written as 

m*(fl) = eptoV2 c3m(fl), (4.4) 

where m(fl) is now a dimensionless function of the angle of heel ft. 
With the aid of (4.2) and (4.3),/x I and/z 2 can be expressed in vl, v 2 and ft. Substituting 

the results in formula (4.1), we have for the thrust: 

(t m(fl) ) T =  -�89 2fl v~t 1 + vtv2t 2+v22t3 + v  1~4 cosfl +2a1]'~ 

m( )j ] 
+ + t c o s  fl  ) 16 , 

where 

(4.5) 

PS L ~ -  21 p _  S L -  , t l  = ( I l o )  q- ~ d -  , pa , = U- '  b - a 

E 

OJ tO J a a t 2 = 110111 PS2L 3 111 + I2o 
D a 

I~1 + I ~ o }  
Dto 

to 2S z 4 I~o I~ ~ " t 3 = (111) [PS 12 ~ + D ~ j ,  t 4 = IToPS2L 3 I l l  + I2~ 
m a 

~ to 1% 
t 5 = 2 11~ a PS2L 4, t 6 = - - P S 2 L  ~ 

(4.6) 

From (4.5) we see that the angle ~1 does not appear in the optimum thrust formula. So 
in any direction the maximum thrust delivered by both the sails and the keel is the same, 
provided we are still in the O(e)-region. This result could be expected. For in the equilib- 
rium state with respect to the sideforces, the sails and the keel deliver the same sideforce, 
only in opposite direction, say F*. Now from formula (3.19) it is clear that the part of the 
total thrust, which could depend on ~1, is cqF* + (~ - cq)F* = ~F*. 

A question which might be important for constructional reasons is which part of the 
thrust is delivered by the sails and which part by the keel. As a consequence of the forego- 
ing this question cannot be answered, unless we know the direction of the total thrust, and 
therefore the direction of the total resistance. 

5. Optimization of T for given angle of  heel 

In order to get insight in the whole optimization problem, we consider first the case in 
which fl is fixed. T can now be maximized as a function of the remaining free variables v 1 
and v 2. Necessary conditions for the existence of an extreme of T are: 

a T  { t  m(fl) 
~v 1 - 0 ~ 2Vlt I + v2t 2 + ~ 4 ~ + 2cd~' oj  = 0, (5.1) 
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m(/~) 
c~T _ 0:::~ Vlt 2 "~-2v2t 3 + CO~Sfl t5 0. 
6~V 2 

(5.2) 

These equat ions are satisfied for 

m(fl) (t2t 5 _ 2t3ta) _ 40~i])0t 3 
COS fl 

vl = 4 t i t  3 - t~ ' 

m(/~) (t2t 4 _ 2tats )  + 2~I~'ot2 
COS fl 

v2 - 4 t t t  3 - t~ 

(5.3) 

Sufficient for the existence of a m a x i m u m  of T in  this point  is 

~2 T ~2 T ( ~2 T ~2 692T 
Ov 2 Ov 2 \ ~ j > 0  and ~ < 0, 

so we have to satisfy bo th  the inequalities: 

4 t i t  3 - t22 > 0 and t a > 0. (5,4) 

The inequalities (5.4) lead to relations between the solutions of the bounda ry  value pro-  
blems, as defined in (3.8). To  prove  these analytically seems very complicated,  but  anyway  

we can check them numerically.  
On "physical"  grounds  it is clear that  a m a x i m u m  of T as a function of v 1 and 1' 2 should 

exist. For  example,  let v 2 + 1'~ ~ o0. This means  that  the absolute  values of the sideforces 
and/or  heeling momen t s  tend to infinity. This  can only be achieved by increasing the 

circulation of the lifting lines, but  this results in an increase of  the induced resistance. So 
the thrust  tends t o w a r d s - o o ,  N o w  the s ta t ionary  point  of  T is given in (5.3), so there T 

should reach its m a x i m u m  value. 
The m a x i m u m  thrust  T, expressed as a function of f l  is: 

T ~ -�89176 + o:m(fl)k 2 cos fl + a~k3 cos z fl], (5.5) 

where 

k I ~ - -  { t6(4t l t  3 - t~) - t i t  ~ + t2t4t 5 - t3 t~}/ (4t l t3  - t~), 

k 2 ~- I~o(2t2t 5 - 4 t3 t4) / (4 t l t3  - t~), (5.6) 

I% ~- - 4(I~o)2t3/(4t l t3  - t~). 

If  we put  e = 0 in (5.5), we find T = - �89176 and because a lifting tine 

cannot  produce  a force in the opposi te  direction of the incoming flow, we m a y  conclude 
that  this Tis  the min imum induced resistance, and thus k 1 > 0. Fu r the rmore  f rom (5.4) we 

find k 3 < 0, hence 

k 1 > 0 ,  k 3 < 0 .  (5.7) 
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6. Approximate dependence of T on the righting moment 

The remaining variable with respect  to which we have to opt imize the thrust  is the heeling angle 
ft. To  be able to do this we have to know the righting m o m e n t  m (4.4) as a function of ft. For  a 
given yacht  in general there will not  be a simple functional  relat ion between m and fl, so the 
o p t i m u m  of Thas  to be found by  numerical  means. Here  we will consider some simple righting 

moments ,  which m a y  be first approx imat ions  for certain types of  yachts, and for which the 
o p t i m u m  fl can be found approx imate ly  by analytical  means.  

Fo r  the opt imizat ion  we need formula  (5.5), which is a ra ther  compl ica ted one, because also 

the "factors" kl (i = 1, 2, 3) in (5.6) are functions of ft. However ,  in the region of interest for 

sailing, viz. 0 < fl < 40 ~ the k i vary only slight!y, because here, roughly speaking, the reflection 
by  the watersurface is not  yet sensed so strongly. In  Fig. 6.1 this is i l lustrated for a special set of 

pa ramete r s  S (4.6), L (4.6), e and gap aft. 

ki(13)-ki(30") 

ki(30 ~ 
0 . 0 / .  ~ _ / 

0,02 ,,, ,. ,"" / 

J I ' 2 " 2'5 ' t t 
5 10 15 0 30 35 /.0 

Figure 6.1. Variation of the kl, proportional to their values for fl = 30~ S = 1, L = {, c~ = 20 ~ gap 1%. 
. . . .  : k 2 . . . . . .  : k 3. 

-0.02 

-0.0/. 

:kl 

In  this section we will assume the k i to be constant.  Of  course, we have to check if the found 

o p t i m u m  fl's are in the region 0 < fl < 40 ~ In the calculations of the next section, the "exact"  
o p t i m u m  is found by numerical  means,  and c o m p a r e d  with the "analyt ical"  op t imum.  

Consider  first the situation, where no righting m o m e n t  m(fl) is applied. F r o m  (5.5) we find the 

m a x i m u m  thrust  as a function offl: 

T = - 1 c 2 f l ~  c o s  2 fi, (6.1) 

and f rom (5.7) we see that  this Tis  positive and has a m a x i m u m  for fl = 0. 

As a first app rox ima t ion  for a na r row beam yacht,  we m a y  assume that  its t ransverse 
metacenter  (see e.g. [8], p. 70) remains  at the same place as long as the heeling angle does not  
become  too large. Then m(fl) is represented by 

m(fl) = M sin fl, (6.2) 

where M is a dimensionless constant.  This cons tant  is fixed by the displacement  of  the yacht  and 
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its transverse metacentric height (i.e. the distance between the center of buoyancy and the 
transverse metacenter). 

Substituting (6.2) into (5.5) and putting d T / d f l  = 0 yields for the optimum angle of heel: 

tg 2fl = ccMk2/(o~2k3 -- M2kx), (6.3) 

with the optimum thrust: 

T 1 2 ~,.,z 2 1 , , , 2 ,  _ .,,/o~2M2k~ + = --gg p V C "-i~tlVl g l  + g2k3 (~2k 3 - M 2 k l ) 2 } .  (6.4) 

We observe, that this Tis greater than (or at least equal to) the optimum T, when no righting 
moment is applied (6.1). So application of a righting moment (6.2) is favourable. 

In the third case we consider the righting moment m as an independent variable (i.e. for every 
angle of heel flit may assume every possible value). This can be realised for example in a dinghy, 
where the crew can alter the righting moment by changing their position. For greater yachts it 
can be done by using an outrigger with an appropriate weight connected to it. 

The conditions O T / ~ m  = OT/~f l  = 0 yield for the optimum m and fl: 

2 m k  1 + o~k 2 cos  fl = 0, (6.5) 

- c~ s in  f l (mk 2 + 2~k 3 cos  fl) = 0. (6.6) 

Equation (6.6) is satisfied if one of its two factors is zero. First sin fl = 0, which together with 
(6.5) gives: 

f l  = O, m = - � 8 9  1. (6.7) 

In order that the second solution of (6.6), viz. m k  2 + 2ek 3 cos fl = 0, be possible, the de- 
terminant of this equation and (6.5) should be zero. This determinant is det = e(4klk 3 - k2), 
and from (5.7) we see that det ~ 0. Hence here the only solutionis the trivial one cos fl = m = 0, 
which corresponds to zero thrust for fl = �89 

Sufficient for a maximum in (6.7) is (02T/Of12)(O2T/Om 2) - (~2T /gm~f l )2  > 0 together with 
0 2 T / O m  2 < O, so we have to satisfy both the conditions 

k ~ - 4 k l k  3 > 0 ,  k, > 0 ,  (6.8) 

which are true, because of (5.7). 
The maximum thrust in this point (6.7) is 

T 1 2  r 2 2 2  = - a k 2 / k  1), - - ~ e  p V c ~ ( k  3 1 2 (6.9) 

and this is, again by (5.7), positive. It is, as it has to be, greater than the maximum thrust when no 
righting moment is applied (6.1). 

Although the found optimum angles of heel fl are approximations, they can be used as a 
starting point in the numerical calculations to find the exact ones. In the next section we will use 
formula (6.3) for this purpose. 
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7. A numerical example 

We will give some numerical  results, based on the exact linearized theory, for a yacht  
which may  be considered as a typical half-tonner.  Its parameters ,  which are impor t an t  for 
our  calculat ions are: 

d isplacement  -= A = 4000 kg, 

t ransverse metacentr ic  height - GM = 0.85 m, 

draft  = c (Section 2) = 1.7 m, 

height of  mast  above  water  = b (Section 2) = 12 m. 

(7.1) 

F o r  this type of yacht  it is reasonable  to give its righting m o m e n t  (anyway for 0 < ~ < l~z) 
by formula  (6.2), so m*(fl) in (4.4) becomes  

m*(fl) = GM.  A. sin fl = 3400 sin ft. (7.2) 

The velocity of  the true wind U (Section 2) is t aken  to be 9 m/s (19 knots).  We choose the 
speed of the yacht  to be cons tant  th roughou t  the calculations, namely  V = �89 

F r o m  Fig. 2.2, it is easy to see that  between the true and relative windspeed (U and U, 

respectively), and the t rue and relative angle of  incidence (~ and ~, respectively), we have 
the following relations: 

U ~ O + V = g U = 1 2 m / s ,  e ~ U ( U + V ) - l e ( ~ = � 8 8  

The paramete rs  S and L (4.6) now become:  

(7.3) 
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Figure 7.1. The thrust Tas a function offl for a = 20 ~ 
- - :  gap 1% : no gap 
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Figure 7.2. The optimum thrust. 
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Figure 7.3. The optimum angle of heel. 
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Figure 7.4. The sideforce, belonging to the optimum T. 
- - :  gap 1% . . . .  : no gap 

For  the gap we wilt consider two situations: no gap and a gap of  1% ( =  12 cm between 

foresail and deck). 
In  this section, the forces will be given in kilogrammes, the angles in degrees. 

Figure 7.1 shows the thrust  T (5.5) (which has not  yet been optimized with respect to fl) 

as a function of the heeling angle fl, with and without  gap, for ~ = 20 ~ 
We remark that  the formula (7.2) for the righting momen t  may  need some corrections 

for large values of ft. We observe that  the difference in T f o r  gap 1% and zero gap is about  
15%. In  [1] we saw that  this difference was about  40%, in the case of  no constraints, so the 
application of constraints on sideforce and heeling moment has a strong levelling effect. The 
occurrence of negative values of  T for fl in the ne ighbourhood  of �89 is caused by the fact 
that  a rather large heeling moment  has to be produced in order to balance the righting 

momen t  which is almost  equal to 3400 kgm in this region. Indeed, if no constraint  was 
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Figure 7.5a. The circulation distributions for e = 5, 10, ..., 35; gap 1%. 

Figure 7.5b. The circulation distributions for ~ = 5, 10, ..., 35;no gap. 

applied on the heeling momen t  in the region n e a r / ?  = ~ ,  the lifting lines could always 

choose zero circulation which would give zero thrust. Then also the remaining constraint,  

viz. zero sideforce, would be satisfied. 

Figures 7.2 to 7.4 give for 0 < c( < 35 ~ the op t imum thrust  T, the angle of heel fl for 

which this T is assumed, and the corresponding sideforce F s (3.14). The values for T and i] 

in Figs. 7.1 and 7.2 are the "exact" ones, however, the values, predicted by (6.4) and (6.3) 

showed an error  of not  more  than 5%. Again we see a difference in the max imum thrust  

with and without  gap of about  15%. Compar ing  Figs. 7.2 and 7.4, we see that  the ratio 
between sideforce Fs and thrust  Tranges  from 22 for c~ = 5 ~ to 3 for ~ = 35 ~ 

Remember  (7.3) that  in our  example the real angle of incidence ~ is about  1.3 times the 

relative one, e. So the region of interest is bounded  below (from the practical viewpoint of 

sailing) by c~ ~ 20 ~ We hope that  this linearized theory will be valid for this value of  e, 
and even for greater values, say until c( = 30 ~ 

In  figures 7.5a and 7.5b the op t imum circulation distributions (3.16) are drawn for gap 

1% and zero gap. The graphs in each set of  diagrams with smallest max imum value belong 
to ~ = 5 ~ the ones with next max imum value to c~ = 10 ~ and so on. 
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